Meeting ambitious international climate goals may require global CO2 emissions to fall below zero in the second half of this century, achieving what is known as net negative emissions. This does not mean, though, that carbon removal is only a long-term solution: the technologies can also play an important near-term role in clean energy transitions. They can neutralise or offset emissions that are currently technically challenging or prohibitively expensive to address. This includes in some industrial processes, such as steel-making and cement production, and long-distance transport, like shipping and aviation. It is important to note that carbon removal technologies are not an alternative to cutting emissions or an excuse for delayed action. But they can be part of the portfolio of technologies and measures needed in a comprehensive response to climate change.
Enhancing Efficiency
Along with capturing carbon, we advocate for avoiding it entirely. In this section, learn about carbon removal and carbon avoidance technologies, the way forward.
Summary
Technology Solutions
Technology solutions include bioenergy with carbon capture and storage (BECCS) and direct air capture, which – as the name suggests – involves the capture of CO2 directly from the atmosphere. Both of these solutions rely on geological storage of CO2 for large-scale carbon removal and could play an important role in clean energy transitions. They are discussed in more detail below.
In pathways limiting global warming to 1.5°C with limited or no overshoot, the IPCC found that agriculture, forestry and land-use measures could be removing between 1 billion and 11 billion tonnes of CO2 per year by 2050. The potential amount of CO2 removal from BECCS ranged from zero to 8 billion tonnes per year by then. To put this in context, global energy-related CO2 emissions were 33 billion tonnes in 2018. Other carbon removal options are not included in the IPCC pathways because of their lack of maturity.
In summary, carbon avoidance and carbon removal projects both have vast potential for supporting offsetting ambitions and can provide additional co-benefits alongside their implementation.
Conclusion
Carbon avoidance projects support climate action by avoiding or reducing emissions released into the atmosphere. An example includes protecting forests that might otherwise be under threat of being cleared. Avoidance credits currently monopolise the voluntary carbon market, contributing to approximately 93% of all available offsets. There is still a debate surrounding the definition of avoidance. As of today, article 6 does not officially define the term. However, following a meeting in preparation for COP27 this year, a definition is expected to be developed in the next couple of months.
Avoidance projects are noticeably different from carbon removal projects, which focus on removing carbon directly from the atmosphere and can be nature-based (e.g., tree planting or reforestation) or technology-based (e.g., direct air capture).
Carbon Avoidance
References
[1] PCC, 2022: Summary for Policymakers. In: Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi: 10.1017/9781009157926.001.
[2] IEA (2023), Tracking Clean Energy Progress 2023, IEA, Paris https://www.iea.org/reports/tracking-clean-energy-progress-2023, License: CC BY 4.0
[3] IEA (2020), Going carbon negative: What are the technology options?, IEA, Paris https://www.iea.org/commentaries/going-carbon-negative-what-are-the-technology-options